Langsung ke konten utama
MATRIKS

Pengertian Matriks

Matriks adalah kumpulan bilangan yang disusun secara baris atau kolom atau kedua-duanya dan di dalam suatu tanda kurung. Bilangan-bilangan yang membentuk suatu matriks disebut sebagai elemen-elemen matriks. Matriks digunakan untuk menyederhanakan penyampaian data, sehingga mudah untuk diolah.
Contoh :

Diketahui jumlah penjualan mobil jenis A, B, dan C, dengan harga jual masing-masing 146, 275, dan 528 (dalam juta) pada kota-kota P, Q, R, adalah :
JENIS MOBILHARGA MOBIL (JUTA)JUMLAH PENJUALAN TIAP KOTA (UNIT)
KOTA PKOTA QKOTA R
A146345641
B275453637
C528513246

Data penjualan mobil tersebut dapat dibuat dalam bentuk matriks sebagai berikut :
  • Matriks harga mobil adalah \begin{pmatrix} 146 \\ 275 \\ 528 \end{pmatrix}
  • Matriks jumlah penjualan adalah \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}

Ordo Matriks

Dijelaskan sebelumnya matriks terdiri dari unsur-unsur yang tersusun secara baris dan kolom. Jika banyak baris suatu matriks adalah m, dan banyak kolom suatu matriks adalah n, maka matriks tersebut memiliki ordo matriks atau ukuran m x n. Perlu diingat bahwa m dan n hanya sebuah notasi, sehingga tidak boleh dilakukan sebuah perhitungan (penjumlahan, perkalian). Pada contoh matriks jumlah penjualan mobil diatas diketahui bahwa:
pengertian dan ordo matriks
  • Banyak baris, m = 3
  • Banyak kolom, n = 3
  • Ordo matriks,  m x n = 3 x 3
Penamaan atau notasi matriks menggunakan huruf kapital, sedangkan elemen-elemen di dalamnya dinotasikan dengan huruf kecil sesuai dengan penamaan matriks dan diberi indeks ij. Indeks tersebut menyatakan posisi elemen matriks, yaitu pada baris i dan kolom j. Sebagai contoh, matriks sebelumnya untuk penjualan mobil :

E = \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix} = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}

Dimana, e_{12} = 56 adalah elemen matriks yang berada pada baris ke-1 (i = 1) dan kolom ke-2 (j = 2). Begitu juga dengan elemen matriks yang lainnya.

Pada matriks terdapat dua jenis diagonal, yaitu diagonal utama dan diagonal sekunder. Diagonal utama merupakan elemen-elemen dengan  yang bisa membentuk garis miring. Diagonal sekunder merupakan kebalikan dari garis miring diagonal utama. Perhatikan matriks berikut :

E = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}

Diagonal utama adalah elemen 34, 36, 46, sedangkan diagonal sekunder adalah elemen 41, 36, 51.

Matriks Identitas

Matriks diagonal dengan elemen-elemen diagonal utamanya bernilai 1 disebut matriks identitas. Pada umumnya matriks identitas dinotasikan dengan ā€œIā€. Contoh :

A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} atauB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Matriks Penjumlahan

Matriks penjumlahan bisa terdiri dari dua matriks atau lebih, yang dapat dijumlakan jika memiliki ordo yang sama. Penjumlahan dilakukan dengan menjumlahkan elemen-elemen yang berposisi sama.

Matriks Pengurangan

Sama halnya dengan penjumlahan, pengurangan dapat dilakukan hanya jika dua matriks atau lebih, memiliki ordo yang sama. Pengurangan dilakukan terhadap elemen-elemen yang berposisi sama.

Matriks Perkalian

Matriks dapat dikalikan dengan sebuah bilangan bulat atau dengan matriks lain. Kedua perkalian tersebut memiliki syarat-syarat masing-masing.

Perkalian Matriks dengan bilangan bulat

Suatu matriks dapat dikalikan dengan bilangan bulat, maka hasil perkalian tersebut berupa matriks dengan elemen-elemennya yang merupakan hasil kali antara bilangan dan elemen-elemen matriks tersebut. Jika matriks A dikali dengan bilangan r, maka  r.A = (r.a_{ij}).
Perkalian matriks dengan bilangan bulat dikombinasikan dengan penjumlahan atau pengurangan matriks dapat dilakukan pada matriks dengan ordo sama. Berikut sifat-sifat perkaliannya:
  • r(A + B) = rA + rB
  • r(A ā€“ B) = rA ā€“ rB

Perkalian dua matriks

Perkalian antara dua matriks yaitu matriks A dan B, dapat dilakukan jika jumlah kolom A sama dengan jumlah baris B. Perkalian tersebut menghasilkan suatu matriks dengan jumlah baris sama dengan matriks A dan jumlah saman dengan matriks B, sehingga:
perkalian matriks
Elemen-elemen matriks C_{(m \times s)} merupakan penjumlahan dari hasil kali elemen-elemen baris ke-i matriks A dengan kolom ke-j matiks B. Berikut skemanya:
perkalian elemen matriks

Jenis-jenis Matriks

Matriks dapat dikelompokan ke beberapa jenis berdasarkan pada jumalah baris dan kolom serta pola elemen matriksnya sebagai berikut :

1. Matriks Baris dan Matriks Kolom

Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja.
  
Contoh :
A = (1  4) atau B = (3  7  9) adalah matriks baris

\begin{pmatrix} 146 \\ 275 \\ 528 \end{pmatrix} atau D = \begin{pmatrix} p \\ q \end{pmatrix} adalah matriks kolom

2. Matriks Persegi

Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.
Contoh :
A = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix} adalah matriks persegi berordo 3, atau
B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} adalah matriks persegi berordo 2.

3. Matriks Segitiga Atas dan Segitiga Bawah

Matriks persegi A yang memiliki elemen matriks a_{ij} = 0 untuk i > j atau elemen-elemen matriks dibawah diagonal utama bernilai 0 disebut matriks segitiga atas. Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i < j atau elemen-elemen matriks diatas diagonal utama bernilai 0 disebut matriks segitiga bawah.
Contoh :
A = \begin{pmatrix} 1 & 6 & 4 \\ 0 & 3 & 7 \\ 0 & 0 & 4 \end{pmatrix} adalah matriks segitiga atas,
B = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 3 & 0 \\ 4 & 6 & 4 \end{pmatrix} adalah matriks segitiga bawah.

4. Matriks Diagonal

Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i \neq j atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal.
Contoh :
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}

5. Matriks Skalar

Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar.
Contoh :
A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} atau B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}

6. Matriks Indentitas

Matriks diagonal dengan elemen-elemen diagonal utamanya bernilai 1 disebut matriks identitas. Pada umumnya matriks identitas dinotasikan dengan ā€œIā€. 
Contoh :

A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} atauB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

7. Matriks Simetris

Matriks persegi A yang memiliki elemen matiks baris ke-I sama dengan elemen matriks kolom ke-j untuk i = j disebut simetris. Atau, dapat dikatakan elemen a_{ij} sama dengan elemen a_{ji}.
Contoh :
\begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 4 & 5 & 7 \end{pmatrix}

Dapat dilihat bahwa elemen baris ke-1 sama dengan kolom ke-1, baris ke-2 sama dengan kolom ke-2, dan baris ke-3 sama dengan kolom ke-3.

Transpose Matriks

Transpose matriks merupakan perubahan baris menjadi kolom dan sebaliknya. Transpose matriks dari A_{m x n} adalah sebuah matriks dengan ukuran (n x m) dan bernotasi AT. Jika matriks A ditanspose, maka baris 1 menjadi kolom 1, baris 2 menjadi kolom 2, dan begitu seterusnya.
Contoh :
\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} ditranspose menjadi \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.

Sifat dari transpose matriks: (A^T)^T = A.

Komentar

Postingan populer dari blog ini

Potensi Diri Saya

Pengertian Potensi Diri Secara umum potensi diri dapat disebut sebagai kekuatan, energi, atau kemampuan terpendam yang dimiliki oleh seseorang namun belum dimanfaatkan secara maksimal. Misalnya seperti fisik, karakter, minat, bakat, kecerdasan, dan nilai plus lainnya yang terkandung dalam diri seseorang tetapi belum dimanfaatkan  dengan baik. Jika merujuk pada KBBI, potensi diri adalah kualitas diri yang dimiliki oleh seseorang, namun belum termanfaatkan dengan maksimal. Artinya, ada sebuah kemampuan atau nilai plus dalam dirinya tetapi belum diasah atau dilatih sehingga kurang terampil dalam menggunakannya. Ciri-Ciri Potensi Diri Menurut Sugiharso et al.  (2009), orang yang berpotensi memiliki ciri-ciri sebagai berikut: Suka belajar dan mau melihat kekurangan dirinya Memiliki sikap yang luwes Berani melakukan sebuah perubahan Tidak menyalahkan orang lain maupun keadaan Bertanggung jawab Menerima kritik dan saran Berjiwa optimis Macam-Macam Potensi Diri Menurut Nashori (2003),...